Sliding orientation effects on the tribological properties of polytetrafluoroethylene

نویسندگان

  • Inkook Jang
  • David L. Burris
  • Pamela L. Dickrell
  • Peter R. Barry
  • Catherine Santos
  • Scott S. Perry
  • Simon R. Phillpot
  • Susan B. Sinnott
  • Gregory Sawyer
چکیده

The chemical inertness, high melting point, and intrinsic lubricity of polytetrafluoroethylene PTFE have been used to develop solid lubricating parts for operation in extreme environments, from frying pans to satellites. The atomic-level mechanisms associated with friction and wear at PTFE surfaces are elucidated here by systematic investigations of the frictional anisotropy measured with respect to chain orientation. In particular, a combination of atomic-scale simulations, nanometer-scale atomic force microscopy experiments, micrometer-scale microtribometers experiments, and macroscale pin-on-disk experiments are used. Data across these length scales, from both the computational and experimental approaches, provide a consistent view of the mechanisms by which the structural orientation of PTFE contributes to its unique tribological properties. © 2007 American Institute of Physics. DOI: 10.1063/1.2821743

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tribological behaviors of several polymer–polymer sliding combinations under dry friction and oil-lubricated conditions

The friction and wear properties of polyamide 66 (PA66), polyphenylene sulfide (PPS) and polytetrafluoroethylene (PTFE) sliding against hemselves under dry sliding and oil-lubricated conditions were studied by using a pin-on-disc tribometer. The effect of applied load and sliding peed on tribological behaviors of the polymer–polymer sliding combinations under dry sliding and oil-lubricated cond...

متن کامل

The effect of normal load on polytetrafluoroethylene tribology.

The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. T...

متن کامل

Structure-property effects on mechanical, friction and wear properties of electron modified PTFE filled EPDM composite

Tribological properties of Ethylene-Propylene-Diene-rubber (EPDM) containing electron modified Polytetrafluoroethylene (PTFE) have been investiagted with the help of pin on disk tribometer without lubrication for a testing time of 2 hrs in atmospheric conditions at a sliding speed and applied normal load of 0.05 m·s–1 and FN = 1 N, respectively. Radiation-induced chemical changes in electron mo...

متن کامل

A Review of Transfer Films and Their Role in Ultra-Low-Wear Sliding of Polymers

In dry sliding conditions, polytetrafluoroethylene (PTFE) composites can form thin, uniform, and protective transfer films on hard, metallic counterfaces that may play a significant role in friction and wear control. Qualitative characterizations of transfer film morphology, composition, and adhesion to the counterface suggest they are all good predictors of friction and, particularly, wear per...

متن کامل

INFLUENCE OF SURFACE NANO/ULTRAFINE STRUCTURE ACHIEVED BY DEEP ROLLING PROCESS ON PLASMA NITRIDING AND TRIBOLOGICAL PROPERTIES OF THE AISI 316L STAINLESS STEEL

Influence of formation of surface nano/ultrafine structure using deep rolling on plasma nitriding and tribological properties of the AISI 316L stainless steel was investigated. Initially, the deep rolling process was carried out on the bar-shaped specimens at 15 cycles with 0.2 mm/s longitudinal rate and 22.4 rpm bar rotation. Then, plasma nitriding treatment was applied on the as-received...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007